
Benzene-induced cancer in humans was first reported
in the late 1920s. Carcinogenesis findings in animals
were not reported conclusively until 1979. Industry
exploited this “discrepancy” to discredit the use of
animal bioassays as surrogates for human exposure
experience. The cardinal reason for the delay between
first recognizing leukemia in humans and sought-after
neoplasia in animals centers on poor design and con-
duct of experimental studies. The first evidence of car-
cinogenicity in animals manifested as malignant tumors
of the zymbal glands (sebaceous glands in the ear canal)
of rats, and industry attempted to discount this as being
irrelevant to humans, as this organ is vestigial and not
present per se in humans. Nonetheless, shortly there-
after benzene was shown to be carcinogenic to multiple
organ sites in both sexes of multiple strains and multi-
ple species of laboratory animals exposed via various
routes. This paper presents a condensed history of the
benzene bioassay story with mention of benzene-associ-
ated human cancers. Key words: benzene; carcinogenic-
ity; industry influence; history; bioassay; public health;
occupational safety; primary prevention.
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Further to Peter Infante’s excellent investigative
exposé of the truth behind some of the benzene
industry’s malpractices and abuses (e.g., with-

holding incriminating data) and resultant OSHA stan-
dard-setting issues,1 there were similar shenanigans
surrounding the experimental findings from benzene-
exposed animals. Following a series of early, albeit
patently inadequate, bioassay experiments on ben-
zene—too few animals, lack of control animals, low and
short-term exposures, incomplete pathology often
looking only for leukemias2—the more modern animal
bioassay data clearly confirm and extend the possible
cancer hazards of worker and consumer exposures to
benzene. To complement the feature by Infante,1 a
brief history of benzene bioassays is given, accompa-
nied by mention of human cancer findings. 

CARCINOGENESIS BIOASSAYS

Experimental chemical carcinogenesis bioassays are
designed and carried out to identify potential carcino-

genic hazards and likely effects for humans.3 Carcino-
genesis results in rodents—mainly rats and mice—have
been shown to be consistent and reliable indicators of
human cancer risks. All known human carcinogens
that have been evaluated in animal bioassays are also
correlatively carcinogenic. Further, of the nearly 100
recognized human carcinogens, about one third were
shown first to be carcinogenic in experimental animals
and subsequently in humans.4 Hence, for chemicals
discovered to be carcinogenic to laboratory animals,
prudent public health policy suggests strongly that
eliminating or minimizing exposures to these carcino-
gens would reduce environmentally and in particular
occupationally associated cancers. Today, this primary
prevention strategy serves unfortunately only as a dim
beacon of better times when the health of workers was
more prominent than profit. This has evolved into what
is now referred to as the precautionary principle,7–9

which poses to act earlier in the available albeit scanty
data stream to initiate health safety strategies and
proactive occupational and public health measures,
despite possible scientific uncertainties.10

IARC BENZENE EVALUATIONS

Over the years, the International Agency for Research
on Cancer (IARC) has evaluated benzene on three
occasions: 1974,11 1982,12 and 1987.13 In 1974,11 the
IARC decided “The data reported do not permit the
conclusion that carcinogenic activity has been demon-
strated” based on “Benzene has been tested only in
mice by subcutaneous injection and skin application.”
Regarding human carcinogenicity data, IARC noted
“It is established that exposure to commercial ben-
zene or benzene-containing mixtures may result in
damage to the haematopoietic system. A relationship
between such exposure and the development of
leukaemia is suggested by many case reports, and this
suggestion is strengthened by a case–control study
from Japan.” 

In 198212 IARC evaluated benzene as having “suffi-
cient evidence that benzene is carcinogenic to man,”
but the available animal data on benzene as only “lim-
ited evidence of carcinogenicity in experimental ani-
mals.” This animal-data conclusion was based on:

Benzene has been tested in rats by intragastric
administration and inhalation exposure, and in
mice by skin application, inhalation exposure and
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subcutaneous injection. Oral administration to rats
resulted in an increase in the incidence of Zymbal-
gland carcinomas. Anaemia, lymphocytopenia and
bone-marrow hyperplasia and an increased inci-
dence of lymphoid tumours occurred in male mice
exposed by inhalation to benzene; in similar inhala-
tion studies with another strain of mice and with rats
there was no evidence of a leukaemic response.
Experiments involving skin application or subcuta-
neous injection of benzene did not produce evi-
dence of carcinogenicity, but most of these experi-
ments were inadequate.

The last time IARC evaluated benzene was in
1987,13 with evidence of carcinogenicity considered
sufficient both for humans and for animals. In
humans the evidence was based on increases in
leukemia in benzene workers.14,15 In animals, accord-
ing to IARC

Benzene was tested for carcinogenicity in mice and
rats by several routes of administration. Following its
oral administration at several dose levels, it induced
neoplasms at multiple sites in males and females of
both species. After mice were exposed to benzene by
inhalation, a tendency towards induction of lym-
phoid neoplasms was observed. Exposure of rats by
inhalation increased the incidence of neoplasms,
mainly carcinomas, at various sites. Skin application
or subcutaneous injection of benzene to mice did
not produce evidence of carcinogenicity, but most
of the experiments were inadequate for evaluation.
In a mouse-lung tumour bioassay by intraperitoneal
injection, an increase in the incidence of lung ade-
nomas was observed in males.

Since the 1987 IARC evaluation, more confirmatory
epidemiologic information has become available,16,17

with multiple myeloma,18 lung cancer, and non-
Hodgkin’s lymphoma19–23 now clearly attributable to
benzene exposures. Risks of acute myeloid leukemia
and other malignant and nonmalignant hematopoietic
disorders associated with benzene exposure in China
are consistent with known benzene exposures, hemato-
toxicity, and cancer risks, extending evidence for
hematopoietic cancer risks to levels substantially lower
than previously established.24 From global public
health and occupational perspectives, perhaps IARC
should consider updating its 20-year-old benzene and
cancer evaluation. Granted the human and animal data
are considered already to be at the highest level of con-
cern, new cancer sites have been discovered and the
carcinogenesis correlations between animals and
humans are mechanistically worth re-examining. 

MALTONI AND CHEMICAL BIOASSAYS

From his early cocarcinogenicity studies of croton oil
on rabbit skin25 and DMBA on hamster skin,26 through
seminal bioassays of vinyl chloride,27–29 gasoline prod-

ucts,30,31 including benzene and MTBE,32,33 and-
formaldehyde,34 up to consumer chemicals such as
ethyl alcohol,35 one can justifiably track the early his-
tory of chemical carcinogenesis by following Cesare
Maltoni and his colleagues’ dedicated work on identi-
fying occupational carcinogens36–38 for developing
public health and occupational standards and polices
of primary prevention of human cancers.39

BENZENE BIOASSAYS

Following Maltoni and his colleagues’ seminal finding
of the carcinogenicity of benzene to laboratory animals
in 1979,40 they and others more definitively elucidated
the carcinogenesis of benzene in a series of papers41–47

using their unique bioassay exposure design with vari-
ous experimental protocols.36–38

Near the beginning of Maltoni’s efforts evaluating
benzene for carcinogenesis in animals the National Tox-
icology Program,3,48–55 created by David Rall,56,57 also
embarked on unraveling the enigma of why benzene
appeared to be an exception (along with arsenic58–64) to
the mammalian carcinogen paradigm2,65–67; that is, a
chemical known to cause cancer in humans had not
been found to do so similarly in animals.* In this vein, I
remember being contacted persistently by industry to
learn of early results of our bioassays on benzene. This
was a bit amusing, because we already knew that ben-
zene caused cancers (leukemias) in humans, and I won-
dered why the concentrated interest of industry in our
animal findings. Calls came at least weekly from the
chemical and petroleum industries. Finally one fre-
quent caller told me that if the bioassays were negative
then the industry would have some mammalian bio-
logic means to better challenge the human epidemio-
logic findings, which industry was already confronting.
If our bioassay were clearly negative this would help bol-
ster their argument that other chemical exposures and
workplace circumstances (confounders) would lend
credence to their benzene-is-not-the-culprit rationale.
In keeping with the NTP’s open policy I responded with
new pathology information as it came available, remind-
ing the inquisitors that until the data were peer-
reviewed in public session, our findings could only be
considered preliminary. When our pancarcinogenesis
findings confirmed and complemented Maltoni’s,
industry was seemingly taken aback, and momentarily
puzzled regarding their next strategy.68–70

Carcinogenesis results of 21 mutually tested chemi-
cals including benzene were compared between the
Ramazzini Foundation and the NTP, finding remark-
able concordance of overall results, and identifying a
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*Both of these “exceptions” have been appropriately debunked,
solidifying the inexorable correlation that all known human car-
cinogens that have been tested in laboratory animals are likewise
carcinogenic.3,71–77



combined total of 13 target sites of benzene-induced
carcinogenesis in animals67 (Table 1).

In 1928, Delore and Borgomano78 reported the first
human case of leukemia associated with benzene expo-
sure.2,65,78 Prior to 1928, of course, benzene was known
to cause “benzene poisoning,” a sequela typically
involving bone marrow damage. Chronic benzene poi-
soning among workers leads to various blood disorders
such as leukopenia, agranulocytosis, anemia, pancy-
topenia, aplastic anemia, myelodysplastic syndrome
(MDS; preleukemia), and leukemias.24,79–81 More
recently, occupational exposures to benzene have been
causatively linked with multiple myeloma,18 non-
Hodgkin’s lymphoma,23 acute82,83 and chronic84–87 lym-
phocytic leukemia, chronic myelogenous leukemia,82,83

and at lower exposures,24,84,87 with some indications for
lung cancer.19–21 All of these and additional target sites
have been identified in animals as well.2,47,65,67 Another
prime use of chemical carcinogenesis results allows the
identification of other potential presumptive target
sites that may be added to or looked for distinctly in
epidemiologic investigations. 

Speculatively, perhaps other sites of human carcino-
genicity have not been either looked for or seen in ben-
zene-exposed workers because death from leukemia is
relatively rapid after onset and diagnosis. This could
also be because available benzene cohorts individually
have been small, except for the one in China. Humans
showing the later-aged or latency-occurring lung can-
cers likely escaped developing leukemias.13,16,19–21 This
concept of competing risks of cancer is shown experi-
mentally quite nicely with the potent carcinogen 1,3-

butadiene: as exposure concentrations are lowered dif-
ferent tumor patterns become manifest.88,89 As with
benzene or other chemicals, early lethal tumors such as
lymphocytic lymphomas or leukemias often reduce the
number of animals at risk for expressing later-develop-
ing and -occurring neoplasms at other sites. The same,
of course, pertains to humans exposed to different
exposure levels, patterns, and durations. 

Before, at, and subsequent to Maltoni’s first reports
of clear evidence of benzene carcinogenicity in labora-
tory animals (and arsenic as mentioned above), intense
industry propaganda and pressure attempted to dis-
count long-term animal bioassays as being irrelevant to
human risk identification; this strategy certainly had
much to do with stifling evidence of benzene carcino-
genicity, and extended to many other economically
important chemicals showing positive cancer findings
in animals as well.3,69 For some years before the benzene
issue, industry and others had mounted a strenuous
effort to dismiss the value of bioassays in a concerted
global attempt to continue unabated marketing and use
of chemicals shown to cause cancers in laboratory ani-
mals, and not yet examined epidemiologically.90

To justify its basic premise, industry seized and cam-
paigned on the then-notion that arsenic and benzene
were both considered to be carcinogenic to humans and
yet had not been shown to cause cancer in laboratory
animals. Now that these two temporarily, albeit histori-
cally non-concordant chemicals have been tested ade-
quately in animals and shown to be classic and multifar-
ious carcinogens (benzene2,47,65,67; arsenic57–64), this
once-dynamic duo touted by industry for vested pur-
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TABLE 1 Benzene: Organ/Tissue site Tumors Identified in Studies from the Ramazzini Foundation and the
National Toxicology Program* in Seven Experiments Using Three Strains of Rats and Three Strains of Mice

Sprague- Sprague-
Dawley Dawley Wistar Fisher* Swiss RF/J B6C3F1*

Rats Rats Rats Rats Mice Mice Mice
(Gavage) (Inhalation) (Gavage) (Gavage) (Gavage) (Gavage) (Gavage)

Zymbal gland + + + + + — + 6
Mammary gland [+] [+] — — + + + 5
Oral + + + + — — — 4
Lung — — — — + + + 3
Nasal cavities + [+] + — — — — 3
Lymphoma [+] — — — — + + 3
Liver + [+] — — — — + 3
Forestomach + — — — — — [+] 2
Skin + — — + — — — 2
Uterus — — — — — — + 1
Ovary — — — — — — + 1
Harderian — — — — — — + 1
Preputial gland — — — — — — + 1
All malignant + + + + + + + 7

TOTAL SITES 9 6 4 4 4 4 11

+ = positive carcinogenic response; [+] = marginally increased carcinogenic response; — = no significant carcinogenic activity;
sites listed in order of prevalence of responses per organ/tissue.
*The two strains utilized in the NTP studies.
Source: Huff.56



poses no longer serves its needs (see footnote on page
214). Now industry uses other arguments such as those
based on threshold differences,91 “non-genotoxic” car-
cinogens,92,93 mechanisms or “modes-of-action” being
unique to animals and not relevant to humans,91–100 even
hormesis,101,102 cell proliferation,92,192–109 inflammation
and general toxicity,110–112 hormonal mediation,113–115

mouse liver tumors,116 and benign tumors,117 to name a
few obfuscatory issues industry has latched onto to cloud
bioassay results and impede or derail regulatory actions. 

Additionally, Maltoni’s first findings of benzene
cancer induction in animals40,41 were heavily disputed
by industry because the organ affected by cancer was
the zymbal gland (located in the inner ear canal),
which humans have as a vestige. This issue of zymbal
glands has been addressed and debunked, along with
other so-called “rodent-unique” organs susceptible to
benzene-induced carcinogenesis.118 Fortunately, this
issue became moot given the plethora of tumors and
tumor types and organ sites seen in the benzene stud-
ies. The other issue making the benzene-is-safe argu-
ment less tenable, as with arsenic, was that benzene was
already long known to be carcinogenic to humans. If
this had not been the case, the battle for more strin-
gent and better worker protection and reduction of
occupational standards for acceptable exposure levels
would have been even more difficult. As it was, lower-
ing of the occupation exposure standard took ten years
longer than anticipated because of adverse decisions
issued by the U.S. Supreme Court.119

We witness this animal-only argument every single
time a chemical of some economic importance is found
to cause cancer in laboratory animals in the absence of
epidemiologic data. What we never encounter is indus-
try’s questioning or disputing the many “negative”
bioassay results on big-volume chemicals. 

BENZENE METABOLITES

Mammalian metabolism of benzene is complex, with
multiple pathways and diverse metabolites. Despite
abundant research, neither the most active carcino-
genic metabolite(s) nor a detailed well-accepted mech-
anism(s) of carcinogenicity of benzene is known with
even a modicum of certainty.2,120,121 Tsutsui et al.,120 for
example, studied benzene- and key metabolite-induced
cell transformation, gene mutations, chromosome
aberrations, aneuploidy, sister chromatid exchanges,
and unscheduled DNA synthesis in Syrian hamster
embryo cells. They found an array of effects for these
endpoints but no one metabolite of benzene consis-
tently drove the results. Another way to shed light on
those is to investigate carcinogenicity of individual
metabolites. Fortunately, several of the most abundant
or long-lasting metabolites (or those that could be
gotten in sufficient quantity) have been tested for car-
cinogenic activity: catechol, hydroquinone, and

phenol. The designs and findings for these carcino-
genicity studies are summarized.

Catechol. Naturally occurring in fruits and vegetables,
present in cigarette smoke, and an industrial chemical,
catechol is used to make insecticides, perfumes, drugs,
and polymerization inhibitors. Catechol has been used
as an antiseptic, in photography, and in dyestuffs. 

Catechol has been shown to have strong promoting
activity in mice, and alone induces forestomach hyper-
plasia, generally a few papillomas of the forestomach
(non-glandular), and adenomatous hyperplasia and
adenocarcinomas of the glandular stomach in near all
rats.122–126 Administered with known carcinogens, cate-
chol typically increased the occurrence of initiator-tar-
geted tumors of the forestomach and stomach, tongue,
and esophagus, but did not enhance their occurrence
in liver, urinary bladder, or thyroid.122–126 Thus, cate-
chol exhibited strong cancer-promotion activity. 

Hydroquinone. Used an antioxidant in the rubber
industry, as a developing agent in photography, and as
an intermediate in the manufacture of rubber and
food antioxidants and monomer inhibitors, hydro-
quinone products are also used as depigmenting agents
to lighten skin. Hydroquinone in deionized water was
given by gavage for two years to groups of rats and mice
of each sex, five days per week at 0, 25 (rats), 50, or 100
(mice) mg/kg.127,128 Nephropathy was common among
the rats, with hyperplasia of the renal pelvic transitional
epithelium and renal cortical cysts increased in male
rats. In mice, thyroid follicular cell hyperplasia was
increased (males: 9% vs 28% and 35%; females: 24% vs
85% and 82%). Increases of anisokaryosis, multinucle-
ated hepatocytes, and basophilic foci occurred in the
livers of male mice.127,128

Regarding carcinogenic responses, renal tubular cell
hyperplasia was seen in two top-dose male rats, with
dose-related increases in renal tubular cell adenomas
in 0% vs 7% and 15%. Mononuclear cell leukemia in
female rats was increased: 16% vs 27% and 40%. In low-
dose male mice liver tumors were marginally elevated:
36% vs 54% & 45%, whereas in female mice liver
tumors were intensified in both hydroquinone groups:
5% vs 29% and 24%.127,128

Hydroquinone made available to rats and mice of
both sexes at 0.8% in the diet for two years induced
renal tubular cell hyperplasia as well as adenomas,
mainly in males of both species, and was associated with
chronic nephropathy in rats.129 Also, epithelial hyper-
plasia of renal papilla was increased in male rats. Hepa-
tocellular adenoma was enhanced in male mice. Squa-
mous-cell hyperplasia of the forestomach epithelium
was higher in mice of both sexes given hydroquinone,
but no increase in tumor development was observed.129

Thus, hydroquinone caused kidney tumors in male
(and possibly in female) rats and mice, leukemia in
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female rats, thyroid follicular cell hyperplasia in mice,
and liver tumors in male and female mice.127–130 Over-
all, there is clear evidence that hydroquinone causes
cancer in laboratory animals. 

Phenol. Approximately 90% of phenol is used in the
manufacture of phenolic (phenol formaldehyde)
resins, caprolactam, bisphenol A, alkyl phenol, and
adipic acid. The remainder is used to produce an
assortment of products: salicylic acid, phenacetin, dyes,
metal cleaners, disinfectants, antiseptics, photographic
chemicals, wood preservatives (pentachlorophenol),
paints, paint and varnish removers, and agricultural
chemicals (2,4-D and parathion).131

For two years rats and mice of each sex were given
drinking water containing 0, 2,500, or 5,000 ppm
phenol. The only carcinogenic response was increases
in leukemia, 36% vs 62% and 50%, that may have been
associated with the phenol administration.131,132 Even
though the NTP considered an association with admin-
istration of phenol was not established, the incidences
in both exposure groups were greater than in controls
and the low dose showed a statistically significant effect.
No other carcinogenic response was observed in rats or
mice. Other low dose increases in male rats included C-
cell tumors of the thyroid (8% vs 14% and 2%), adre-
nal gland pheochromocytomas (26% vs 44% and 18%),
and interstitial-cell tumors of the testes (88% vs 98%
and 94%).131,132

In other studies, phenol given orally with benzo(a)-
pyrene produced sixfold increases in malignant
tumors of the forestomach over BaP given alone.112

Phenol also promoted mouse skin carcinogenesis in
two-stage protocols.133

Scientific evidence indicates that multiple mecha-
nisms are likely to contribute to benzene-induced
leukemias and cancers in other target organs; whether
these include individual or co-mechanisms for the indi-
vidual metabolites remains to be ascertained. (Reason-
ably straightforwardly, this of course tends to represent
universal thinking in chemical carcinogenesis, and leads
to the notion that unique chemicals or classes of chemi-
cals induce cancers by “different” mechanisms.) Increas-
ing information lends further credence that metabolites
of benzene are primarily responsible for its carcinogenic
activity.2,120,121,134–137 Phenol, hydroquinone, and cate-
chol are the major metabolites of benzene in mammals,
established in analyses of human urine,135 and have been
tested for long-term carcinogenicity. Phenol, to a lesser
extent, and hydroquinone are associated individually
with inducing leukemia in animals, and we might opine
in humans as well. One wonders what would be the
result(s) if the two chemicals were tested together; that
is, whether these findings would be more or less potent
than those for benzene or either of these metabolites
alone. Catechol causes forestomach and stomach tumors
in animals, whereas benzene causes forestomach tumors

but does not cause stomach tumors. Some of the other
carcinogenic effects of benzene may be due to combina-
tions of the metabolites or to others not yet evaluated for
carcinogenic activity. 

At the same time, carcinogenic concordance in
target sites between animals and humans need not be
sacrosanct. Typically in animals there are more tumor
sites identified simply because more pathology is done
on animals than on humans. One suspects that if all
organs were evaluated in humans when people died of
“old age” or with cancers other organs would be found
to be neoplastic as well. Meanwhile, epidemiology
might best broaden the organ scope for future studies.

CONCLUSIONS

The clear findings of cancers in animals resulting from
exposures to benzene (and to arsenic), and to all other
known human carcinogens that have been tested in ani-
mals, confirm and validate once again the value of long-
term animal bioassays for identifying potential cancer
risks to humans.3,5,67–77,138–173 Virtual acknowledgement of
this led industry to new strategies to deny bioassay results:
posing that mechanisms (or “modes of action”) of car-
cinogenesis in animals are unique and hence not rele-
vant to humans. Interestingly most of these claims are
based on supposition and not data regarding either the
exact mechanism in animals or the lack thereof in
humans. A key to reducing damage from all carcinogens,
whether identified in animals or in humans or in both
mammalian species, centers on reducing exposures.

The author thanks Peter Infante and Rick Irwin for reviewing and
offering valuable comments on this paper, and extends appreciation
to Joe LaDou and Sandy Lovegrove for all their crucial help and
understanding.
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